Article 6414

Title of the article

                           THE GALERKIN METHOD FOR SOLVING THE SCALAR PROBLEM OF SCATTERING                                  BY AN OBSTACLE OF COMPLEX SHAPE

Authors

Derevyanchuk Ekaterina Dmitrievna, Postgraduate student, Penza State University (40 Krasnaya street, Penza, Russia), mmm@pnzgu.ru
Smol'kin Evgeniy Yur'evich, Postgraduate student, Penza State University (40 Krasnaya street, Penza, Russia), e.g.smolkin@hotmail.com
Tsupak Aleksey Aleksandrovich, Candidate of physical and mathematical sciences, associate professor, sub-department of mathematics and supercomputer modeling, Penza State University (40 Krasnaya street, Penza, Russia), altsupak@yandex.ru

Index UDK

517.3

Abstract

Background. The aim of this work is to numerically study the scalar problem of scattering by an obstacle of complex shape consisting of solid bodies and infinitely thin acoustically soft screens.
Material and methods. The problem is considered in the quasiclassical statement; the original boundary value problem for the Helmholtz equation in unbounded space is reduced to a system of integral equations over bounded manifolds of dimension 2 and 3. To find the numerical solution to the problem of diffraction the Galerkin method is applied using finite piecewise constant basis functions.
Results. The projection method for solving the system of integral equations of the scalar diffraction problem was developed and implemented; several computational experiments were performed.
Conclusions. The proposed numerical method is an effective way to find approximate solutions to the scalar problems of diffraction on obstacles of complex shape; it can also be used to solve problems of a wider range.

Key words

scalar diffraction problem, integral equations, Galerkin method, basis functions, approximation condition

Download PDF
References

1. Medvedik M. Yu., Smirnov Yu. G., Tsupak A. A. Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki [The journal of calculus mathematics and mathematical physics]. 2014, vol. 54, no. 8, pp. 1319–1331.
2. Medvedik M. Yu., Smirnov Yu. G. and Tsupak A. A. Computational Mathematics and Mathematical Physics. 2014, vol. 54, no. 8, pp. 1280–1292.
3. Smirnov Yu. G., Tsupak A. A. Differentsial'nye uravneniya [Differential equations]. 2014, vol. 50, no. 9, pp. 1164–1174.
4. Smirnov Yu. G., Tsupak A. A. Differential Equations. 2014, vol. 50, no. 9, pp. 1150–1160.
5. Tsupak A. A. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Fizikomatematicheskie nauki [University proceedings. Volga region. Physics and mathematics sciences]. 2014, no. 1 (29), pp. 30–38.

 

Дата создания: 17.03.2015 15:07
Дата обновления: 26.03.2015 14:40